
www.manaraa.com

Abstract Interpretation for Secrecy Correctness in
E-Commerce Protocols

K. A DI† , M. DEBBABI‡ & L. PENE†

Computer Security Research Laboratory

†Computer Science and Engineering Department
Université du Québec en Outaouais

Gatineau, Qc, Canada
{adi, penl01}@uqo.ca

‡ Concordia Institute for Information Systems Engineering,
Concordia University,
Montreal, Qc, Canada

debbabi@ciise.concordia.ca

Abstract— Given its special nature, e-commerce yields concerns
for providing secure transactions. Accordingly, a number of secu-
rity properties, such as secrecy, authentication and fairness, have
to be guaranteed. In this paper, we present a new method based
on abstract interpretation for secrecy verification in e-commerce
protocols. Hence, we define an abstract message domain and an
abstract interpretation over finite and approximated models of
e-commerce protocols. This allows us to build a semi-decidable
procedure for e-commerce protocol correctness with respect to
the secrecy property. Our approach is fully automatic from
cryptographic protocol description to results and requires no
user input except the protocol description and the level of the
abstraction.

Index Terms— E-commerce protocols, Abstract Interpretation,
Secrecy, Protocol Correctness.

I. I NTRODUCTION AND RELATED WORK

With the dazzling expansion of computer networks and the
emergence of new technologies such as World Wide Web
and electronic commerce, security became a major concern
for the computer research community. Accordingly, a surge of
interest is devoted to the design, implementation and analysis
of security protocols that are a basis of e-commerce protocols.

A considerable number of security protocols have been devised
during the past two decades. Many among them have been
shown flawed years after their first use. Consequently, a great
deal of interest has been expressed in the development of
formal techniques for the specification, design and verification
of security protocols. Furthermore, we anticipate that therapid
expansion of distributed systems, communication networks,
Internet, web applications, etc., will certainly bring a major
need in security protocols. It is then imperative to have
appropriate environments for the correct development of these
protocols.

This research is supported by a research grant from the Natural Science
and Engineering Council of Canada, NSERC, and the "Fonds québécois de
la recherche sur la nature et les technologies", FQRNT.

Security protocols verification has known a significant
progress. Burrows, Abadi and Needham [1] introduced the
notion of modal logic of belief (the BAN logic) on security
protocols more then a decade ago. A new linear and modal
logic for specifying security properties has been advancedby
Adi et al. [2]. The logic is compact, expressive and formal
and has been used to specify classical security protocols and
electronic commerce protocols. Lowe and others introduced
the concept of model-checking and used it to successfully
finding flaws in security protocols [3], [4] with the aid of
systems such as FDR [5] and NRL [6]. Several other important
results have to be mentioned, such as the use of theorem
proving by Bolignano [7] and the use of inductive rules by
Paulson [8].

Abstract interpretation has been applied successfully in the
verification of security protocols and a number of valuable
abstract models for security protocols have been obtained,such
as the tree automata of Monniaux [9], the∨-parameterized
tree abstractions of Goubault-Larrecq [10], the abstract game
semantics of Adiet al. [11] and the pattern-based abstrac-
tion of Lakhnechet al. [12]. Abstract interpretation allows
semantics manipulations by performing simulations on data
description in order to obtain correct, implementable and most
accurate analysis. Other related approaches are the secrecy
conditions of Houmani and Mejri’s [13] and the trace model
for authentication of Cremerset al. [14].

In general, models describing protocol-behaviors are infinite.
In most cases, for verification purposes, only a finite and
approximated model is required. For this reason, we consider
the problem of computing such an approximation and we
propose to simulate the required partial protocol execution at
an abstract level. More precisely, we define a method that
computes abstract finite models for security protocols with
the aid of an abstraction function that bounds the size of the
intruder-messages. The abstract model is then used to definea

www.manaraa.com

semi-decidable procedure for secrecy correctness. Unlikethe
other approaches which require that the user designs himself
the abstraction or manually helps a program to compute in-
variants (see for instance [7]), our approach is fully automatic
from cryptographic protocol description to results and requires
no user input except the protocol description and the level
of the abstraction. The latter parameter allows the user to
tune the precision of the abstraction to get the best results
while minimizing the cost of the analysis. Our method finds
immediate applicability in secure communications over private
and public networks for e-commerce, teleconferencing, mobile
computing etc.

The remainder of this paper is organized as follows. The
next section is devoted to the definition of a trace-based
model for security protocols. Section III is devoted to the
definition of an abstract domain of messages and an abstraction
function on messages. In section IV we present a method
for computing abstract cryptographic protocol and abstract
trace-based models. Section V states a sufficient conditionfor
verifying the secrecy property of a cryptographic protocols.
Finally, section VII contains concluding remarks.

II. T RACE-BASED MODELS FORSECURITY PROTOCOLS

The message syntax used in security protocol descriptions is
captured by the following BNF (Backus-Naur Form) grammar:

m ::= cst Constant Message
| {m}m′ Encrypted Message
| m.m′ Message Concatenation
| f(m) Function Application

All messages that keep constant their values along a given
protocol run are considered as constants and will be abstracted
to terms of the formcte. A messagem encrypted with key
m′ is written {m}m′ and forms a message by itself. The
operator “.” is used to separate concatenated messages. All
non-constant messages will be represented as terms through
functional application. We useAx, By, x, y : nat, to denote
principals andS to denote the server. A shared key between
Ax and By is represented byKaxby

. A fresh nonceN ,
created by a principalAx in a protocol runσ, is represented
by the termN(Ax, σ). For convenience, messages may be
annotated. We use superscript annotations to indicate run
identifiers and subscript annotations to indicate the principal
association. Accordingly, the termN(Ax, σ) will be simply
represented asNσ

Ax
. If in some context more than one nonce

are needed within the same session, they will be representedby
N1(Ax, σ), N2(Ax, σ), etc. Letm, m1 andm2 be messages.
We say thatm is atomic if m 6= m1.m2 and m 6= {m1}m2

.
We suppose that encryption keys are always atomic messages.

In the presence of a malicious intruder, a protocol can be
described as a finite sequence of statements of the form:

σ.i, Ax −→ I(By) : m

σ.i, I(Ax) −→ By : m

which state that during a protocol stepi, Ax sends the message
m intended forBy over the network, thenBy gets the message

m from the network, as intended byAx. I(Ax) stands for
the intruder playing theAx’s role. The motivation underlying
such a notation is that we assume that the network is under
the control of a malicious smart intruder. All messages sent
or received by honest principals transit by the intruder. This
is used to capture the fact that the intruder is aware of
any message circulating over the network. For the sake of
convenience, we can also represent the two above actions by
a unique actionσ.i, Ax −→ By : m.

The execution of a security protocol generates a trace con-
sisting of a sequence of events. Each event results from the
execution of a protocol step corresponding to a send action or
a receive action. A run of a protocol is a particular execution
of the protocol. We refer to a protocol run as a session. The
execution of a protocol is based on an interleaving model in
which all events, including concurrent events, occurring during
a run are interleaved to form a single trace of that execution.
A protocol trace is said to be valid if all the messages sent
by the intruder could be derived from the intruder’s cumulated
knowledge (initial knowledge and received messages), and all
the involved principals respect the protocol. We assume that
the intruder is able to perform the following actions: overhear
messages, intercept messages, replay messages and generate
new messages using his initial knowledge and the overheard
messages. In the following, we introduce formally the notion
of protocol traces. A protocol trace is a sequence of protocol
events resulting from any interleaving of (possibly partial)
protocol runs. We have no restrictions on traces in the sense
that we support multi-session (an agent could participate in
many sessions) and multi-role (an agent can be an initiator in
some sessions and responder in others).

The setT of traces is defined inductively as follows:
• ε ∈ T
• if t ∈ T anda is a protocol event thent.a ∈ T

whereε stands for the empty trace and “.” is the concatenation
operator for sequences.

A protocol can then be modelled as a subset of tracesP ⊆ T .
More formally, following Paulson’s model [8], we describe the
set of protocol tracesP as the closure of a set of inductive
rules. In this approach, a security protocol is modelled by aset
of rules representing protocol steps and intruder capabilities.
To give an example of such a modelling, consider a version
of theWoo and Lamauthentication protocol [15]. The goal of
this protocol is to authenticate the identity of the principal Ax

with respect to the principalBy. To achieve this objective, the
protocol uses an authentication serverS. The specification of
this protocol is given in Table I. Here,Kaxs is a key shared
betweenAx andS andKbys is a key shared betweenBy and
S. The messageNσ

by
is a nonce generated byBy during the

sessionσ. It is used byBy to preclude the replay of messages
coming from preceding sessions. TheWoo and Lamprotocol
tracesP are built up inductively by a set of rules shown in
Table II.

The inductive definition starts with theempty rule. The empty

www.manaraa.com

TABLE I

THE Woo and LamAUTHENTICATION PROTOCOL

Message σ.1. Ax −→ By : Ax

Message σ.2. By −→ Ax : Nσ
by

Message σ.3. Ax −→ By : {Nσ
by

}Kaxs

Message σ.4. By −→ S : {Ax.{Nσ
by

}Kaxs
}Kbys

Message σ.5. S −→ By : {Nσ
by

}Kbs

TABLE II

Woo and LamINDUCTIVE RULES

empty
ε ∈ P

Receive
t ∈ P (σ.j, Ax −→ I(By) : m) ∈ t

t. (σ.j, I(Ax) −→ By : m) ∈ P

Intruder
t ∈ P m ∈ Message(t)⇓

t. (σ.j, I(By) −→ Ax : m) ∈ P

Message 1 t ∈ P
t. (σ.j, Ax −→ I(By) : Ax) ∈ P

Message 2
t ∈ P Nσ

b
6∈ Message(t)⇓

t. (σ.j, By −→ I(Ax) : Nσ
b

) ∈ P

Message 3
t ∈ P (σ.j, I(By) −→ Ax : Nσ

b
) ∈ t

t. (σ.j, Ax −→ I(By) : {Nσ
b
}Kas

) ∈ P

Message 4
t ∈ P (σ.j, I(Ax) −→ By : Ax) ∈ t (σ.j, I(Ax) −→ By : {Nσ

b
}Kas

) ∈ t

t. (σ.j, By −→ I(S) : {Ax.{Nσ
b
}Kas

}Kbs
) ∈ P

Message 5
t ∈ P (I(By) −→ S : {Ax.{Nσ

b
}Kas

}Kbs
) ∈ t

t. (σ.j, S −→ I(By) : {Nσ
b
}Kbs

) ∈ P

where
Message(t) is the set of messages in the tracet

t is the set of components in the sequencet

trace belongs always toP . For each protocol step, we have
a corresponding rule. For example, in the ruleMessage 2, a
trace t ∈ P can be extended with the event(σ.j, By −→
I(Ax) : Nσ

b) wheneverNσ
b is a fresh nonce,i.e., it has not

been used int. The ruleReceive states that a principal can
get a message only if it has been previously sent to her. The
rule Intruder models the capacity of the intruder to send any
message built up from the past traffic.

The intruder closure operation _⇓ allows us to capture the
usual intruder capabilities: encryption, decryption, messages
concatenation and message decomposition.

Definition 1: (Closure) Let M be a set of messages. We
denote byM⇓ the closure of the set M under the conventional
intruder computations (encryption decryption, message cate-
nation, etc.). The closureM⇓ is defined as the smallest set
which satisfies the following conditions:

1) M ⊆ M⇓

2) If K ∈ M⇓ and{m}K ∈ M⇓ thenm ∈ M⇓

3) If K ∈ M⇓ andm ∈ M⇓ then{m}K ∈ M⇓

4) If m ∈ M⇓ andm′ ∈ M⇓ then (m, m′) ∈ M⇓

5) If (m, m′) ∈ M⇓ thenm ∈ M⇓

6) If (m, m′) ∈ M⇓ thenm′ ∈ M⇓

III. A BSTRACT DOMAIN OF MESSAGES

The abstract domain of messages is built as an extension of the
concrete domain by the abstract messages> and⊥. Intuitively,
the value> is used to abstract a (possibly infinite) set of
messages. For instance, the message{>}K stands for any
message encrypted with the keyK. It is an abstraction of a
(possibly infinite) set of concrete messages encrypted withthe
key K. We use also the abstract message value⊥ to represent
the empty set of messages. From now on, we noteD the

www.manaraa.com

concrete domain of messages andD# the abstract domain of
messages.
We define an ordering relation on abstract messages≤a

that captures the notion of approximation on messages.
∀m, m′, m1, m

′
1 ∈ D#:

m ≤a m

⊥ ≤a m

m ≤a >
m ≤a m′ and m′ is atomic ⇒ m = m′

m ≤a m′ and m′ ≤a m′′ ⇒ m ≤a m′′

m ≤a m′ ⇔ {m}K ≤a {m′}K

m ≤a m′ and m1 ≤a m′
1 ⇔ m.m1 ≤a m′.m′

1

We define a functiona_,_(_) to approximate (abstract) mes-
sages. This function takes as parameters a messagem and
limits l1 andl2 (which are natural numbers). It replaces some
sub-messages ofm by the abstract value>. Intuitively, the
function a_,_(_) is used to prune the algebraic structure of
a message while keeping the external form of that message.
The valuel1 acts on the depth of encryptions in a message
while the valuel2 acts on the depth of concatenations. Note
that similar approaches have been used for other purposes. See
for instance, k-limiting in may-alias analysis [16] and abstract
rewriting [17], [18].

Definition 2 (Abstraction Function):The message abstrac-
tion functiona_,_(_) is defined as follows:

a : N × N × D −→ D#

al1,l2(m) = m if m is atomic
al1,l2(m.m′) = al1,l2−1(m).al1,l2−1(m′) if l2 ≥ 1
al1,l2({m}m′) = {al1−1,l2(m)}m′ if l1 ≥ 1
al1,0(m.m′) = >
a0,l2({m}K) = >
al1,l2(>) = >
al1,l2(⊥) = ⊥

From now on, whenl1 andl2 are understood, we simply write
ma instead ofal1,l2(m).

In the following, we present some interesting properties ofthe
abstraction functiona_,_(_).

Proposition 1: The message abstraction functiona_,_(_)
has the following properties:

∀m ∈ D#, ∀l1, l2, l
′
1, l

′
2 ∈ N, l1 ≥ l′1, l2 ≥ l′2 :

al1,l2(m) ≤a al′
1
,l′

2(m) (1)

∀m ∈ D#, ∀l1, l2 ∈ N : m ≤a al1,l2(m) (2)

a ◦ a = a (3)

∀m, m′ ∈ D#, ∀l1, l2 ∈ N : m ≤a m′ ⇒

al1,l2(m) ≤a al1,l2(m′) (4)

Proofs are given in the appendix of the paper.

• The proposition 1(1) establishes a relation between the
values ofl1 andl2 and the precision of the abstraction. As
we may expect, the precision of the abstraction increases
when the values ofl1 and l2 increase.

• The proposition 1(2) establishes that the abstraction func-
tion a_,_(_) is extensive, i.e. the abstracted message can
not be more precise than the original message.

• The proposition 1(3) states that the abstraction function
a_,_(_) is idempotent. This property can be interpreted as
the fact that all the abstracted information is lost at once.

• The proposition 1(4) states that the abstraction function
a_,_(_) is monotone. This property can be interpreted
as the fact that the abstraction process preserves the
soundness of the approximation.

A function f is an upper closure with respect to the ordering
relation if and only iff is monotone, extensive and idempo-
tent. The abstraction function has all these properties. Intu-
itively, we can acknowledge that the initial ordering relation
is preserved on set of abstracted messages.

Corollary 1: The abstraction functiona_,_(_) is an upper
closure on the abstract domain of messages with respect to
the ordering relation≤a.

Proof: The proof is immediate from the propositions
1(2), 1(3) and 1(4).

For instance, letl1 = 2, l2 = 4 and letx be the following
message:x = {m1.{m2.m3}K1

.{{m4}K2
.m5}K3

.m6}K4
.

The messagesm1, m2, m3, m4, m5, m6 are atomic messages
andK1, K2, K3, K4 are cryptographic keys. Then, messagex

is abstracted by the abstraction functiona_,_(_) as shown in
Table III.

The following proposition states that the abstraction function
a_,_(_) bounds the size of messages.

Proposition 2: Let m be a message,l1 andl2 be two natural
numbers then:

|al1,l2(m)| ≤ 2l1+l2 − 1

The intruder closure operation captures the usual intruder
capabilities: encryption, decryption, message concatenation
and message decomposition. Given a finite set of messages
M , two natural numbersl1, l2, we define an abstract closure
of M notedM

#

⇓ , as the smallest set satisfying:

1) If m ∈ M thenal1,l2(m) ∈ M
#

⇓

2) If K ∈ M
#

⇓
and{m}K ∈ M

#

⇓
thenal1,l2(m) ∈ M

#

⇓

3) If m.m′ ∈ M
#

⇓ thenal1,l2(m) ∈ M
#

⇓

4) If m.m′ ∈ M
#

⇓ thenal1,l2(m′) ∈ M
#

⇓

5) If m ∈ M
#

⇓ andK ∈ M
#

⇓ thenal1,l2({m}K) ∈ M
#

⇓

6) If m ∈ M
#

⇓ andm′ ∈ M
#

⇓ thenal1,l2(m.m′) ∈ M
#

⇓

The next proposition establishes the finiteness of a set of
messages under particular conditions.

www.manaraa.com

TABLE III

MESSAGE ABSTRACTION EXAMPLE

a2,4(x) = {a1,4(m1.{m2.m3}K1
.{{m4}K2

.m5}K3
.m6)}K4

= {a1,3(m1).a1,3({m2.m3}K1
.{{m4}K2

.m5}K3
.m6)}K4

= {m1.a1,2({m2.m3}K1
).a1,2({{m4}K2

.m5}K3
.m6)}K4

= {m1.{a0,2(m2.m3)}K1
.a1,1({{m4}K2

.m5}K3
).a1,1(m6)}K4

= {m1.{a0,1(m2).a0,1(m3)}K1
.{a0,1({m4}K2

.m5)}K3
.m6}K4

= {m1.{m2.m3}K1
.{a0,0({m4}K2

).a0,0(m5)}K3
.m6}K4

= {m1.{m2.m3}K1
.{>.m5}K3

.m6}K4

Proposition 3: Let M be a set of messages such that the
set of atomic messages inM is finite. If the depth of each
message inM is bounded then the setM is finite.
The intruder closure operation in the concrete model leads to
an infinite set of messages. The abstraction process gives usa
way to obtain an abstract finite representation. The following
proposition states thatM#

⇓ is a finite set.

Proposition 4: Let M be a finite set of messages. ThenM
#

⇓

is finite.

IV. SIMULATING CRYPTOGRAPHICPROTOCOL RUNS

In this section, we define an abstract semantics for security
protocols. This new semantics is used to approximate execu-
tion models of protocols. The obtained abstract models are
then used to decide if security protocols satisfy the secrecy
property with respect to a sensitive message.

The intruder can use the protocol in two different ways. The
first involves a passive attack on the protocol. It allows the
intruder to intercept messages that will add new information
to his knowledge. However, not all the new data is necessarily
useful, as we will prove in this section. The second way of ben-
efiting from protocol runs is called protocol instrumentation.
The intruder sends certain data expecting a valuable message
in response. We analyze in the following what would be
helpful for an intruder that tries to build an attack. The intruder
can use his concatenation and decomposition abilities at any
time, as they don’t depend on the value of the information.
However, he might try to encrypt or decrypt messages with
keys that he does not possess. For instance, we consider the
following protocol:

Message σ.1. Ax −→ By : Nσ
ax

Message σ.2. By −→ Ax : {Nσ
ax
}Kaxby

The intruder instruments the protocol as follows. He knows
that the message transmitted during the second step is an
encryption of the first message with a session key that he
does not know. By playing the role of the initiator agent, he
introduces the piece of data, possibly from a different session,
that he wants encrypted. In return, he receives informationthat
he could not derive from his knowledge set using the standard
closure capabilities. Of course, it is sometimes sufficientto
run a protocol sequence, rather than a complete session. This

observation allows the presence of partial runs in the trace
modeling the intruder’s behavior. The same approach can be
used for having messages decrypted by unsuspecting agents
as shown in the following protocol:

Message σ.1. Ax −→ By : {Nσ
ax
}Kaxby

Message σ.2. By −→ Ax : Nσ
ax

A. Abstracting Atomic Messages

Our aim is to compute the intruder’s knowledge in a parallel
multi-session protocol run. Unfortunately, as shown in previ-
ous sections, the model capturing such behavior is infinite and
uses an unbounded number of principals. As it is impossible
to simulate such models, we introduce in the following a safe
computable upper approximation of the intruder’s knowledge.

1) Abstracting Agent Names:
We use a finite set of constants{A, B, · · · } to denote agent
names. This set of agent identities is sufficient for modelling
any protocol execution, including multi-sessions and mas-
querading or impersonation attacks. Each constant abstracts
a (possibly infinite) set of agent names. For instance, for
a protocol stepσ.i.Ax −→ By : Ax, the agent nameA
will be used to abstract the (possibly infinite) set of initiator
agentsAx. This abstraction is correct since it overestimates
the intruder’s knowledge. We conclude that if the intruder can
get A, then he can get any agent nameAi, i ∈ N running
the concrete communication protocol as initiator. We make
the same assumption about the responder. Usually, only three
constants are employed:A, B, and S, whereS abstracts a
server name for protocols that involve one.

2) Abstracting Keys:
Each agent has one pair of public-private keys. Public keys
are considered known to all potential agents participatingin
a protocol run, including the intruder. Therefore, we assert
that all public keys associated with agent names are part of
the intruder’s initial knowledge. For instance, the constant Kb

abstracts the concrete public keyKby
of an agent namedBy.

The private keys are the inverses of the public keys. They
are not part of the intruder’s initial knowledge and are never
transmitted during the protocol run. As a consequence of the
number of agents being bounded, the number of their public
and private keys is a finite set.

Session keys are variables that are shared by agents for the

www.manaraa.com

duration of one session only. We will abstract the session keys
by a constant for any pair of agents. The rationale behind this
is that if the intruder is able to get an exchanged session key
in a particular sessionσ of a protocol run, then it could get
the session keys used in any other session of the protocol run.

3) Abstracting Nonces:
Nonces are fresh messages unique to a particular session.
Since we are interested in secrecy, we will abstract away from
the notion of message-freshness and consider these messages
as constants for all sessions of the protocol. The intuition
is that if the intruder is able to get an exchanged nonce in
a particular sessionσ of a protocol run, then it could get
the same nonce in any other session of the protocol run.
Hence, the nonceNσ

ax
is abstracted by the atomic constant

messageNa. This abstraction is an overestimation of the
intruder capabilities and therefore it is correct for our analysis.

We consider that the intruder owns a nonceNi that is part
of his initial knowledge.Ni is a constant atomic message.
Since there is no way for a regular agent to check the value
of a nonce created by any other agent, including the intruder,
we empower the intruder to re-use the same nonceNi in any
protocol session.

All the atomic messages other than those already introduced
are abstracted by constant valuescte, as the security properties
depend only on the keys and nonces.

B. Abstracting Protocols

Let P be a concrete protocol and letl1 and l2 be two natural
numbers. To abstract protocol specifications, we define an
abstraction function, notedΨ as in Table IV-B.

In the remainder of the paper, we noteP# = Ψ(P) the abstract
protocol. For instance, letP be the following authentication
protocol:

Message σ.1. Ax −→ By : {Ax.Nσ
ax
}Kby

Message σ.2. By −→ Ax : {Nσ
ax
}Kax

If we fix the values ofl1 = 1 and l2 = 1, the above protocol
is then abstracted as:

Message σ.1. A −→ B : {A.Na}Kb

Message σ.2. B −→ A : {Na}Ka

A simulated run of P# reveals that the abstract in-
truder’s knowledge with limitsl1 = 1 and l2 = 1 is
{Ni, {A.Na}Kab

, {Na}Kab
}⇓, which means that the nonceNa

is never revealed by the abstract protocol. This means thatNσ
ax

is secret inP.

Let t = a1.a2. . . . be a (possibly infinite) trace whereai is
a communication action. In order to determine the abstracted
knowledge of the intruder, we fix the values ofl1 and l2. The
abstraction of each individual action produces an abstracted

protocol step. The sequence of all abstracted actions defines
the abstracted tracet#. To generate an abstract tracet# from
an abstract protocolP#, we can use a modified version of
the Paulson’s inductive rules presented above [8] by applying
the abstraction functiona_,_(_) to each exchanged message
and replace the intruder closure function _⇓ by the abstract
version _#⇓ .

Let t be the following trace:

t = (σ.1. A1 −→ I(B1) : A1).
(σ.1. I(A1) −→ B1 : A1).
(σ.2. B1 −→ I(A1) : Nσ

b1
.A1.B1).

(σ.2. I(B1) −→ A1 : m).
(σ.3. A1 −→ I(B1) : {m}Ka1s

)

wherem is part of the intruder knowledge. Forl1 = 1 and
l2 = 1, the abstract tracet# is:

t# = (σ.1. A −→ I(B) : A).
(σ.1. I(A) −→ B : A).
(σ.2. B −→ I(A) : Nb.>).
(σ.2. I(B) −→ A : ma).
(σ.3. A −→ I(B) : {ma}Kas

)

Given a tracet and a finite set of intruder’s initial knowledge
KI , then the intruder knowledge associated with the abstract
trace t#, noted IK(t#), is generated by the relation|∼
defined in Table V.

The following proposition states that the abstract trace model
t# for an abstract protocolP# is finite, i.e. has a finite number
of actions.

Proposition 5 (Finiteness):Let P be a cryptographic pro-
tocol and letP# be the

corresponding abstracted protocol. Then, the multi-session,
multi-role trace execution modelt# of P# is finite.

V. SECRECY CORRECTNESS

Secrecy is the fact of keeping secret a given piece of infor-
mation. This aspect of security is certainly the oldest and the
best known. We say that a protocol preserves the secrecy of
one of its parameters if it does not leak any information about
these parameters during its execution. The parameters of the
protocol that have to be kept secret can be cryptographic keys,
nonces, or any other sensitive data. For instance, the following
protocol does not guarantee the secrecy of the messagem

since the key used to encryptm has been made public.

σ.1 Ax −→ By : Kσ
axby

σ.2 By −→ Ax : {m}Kσ
axby

In the following we give a sufficient condition to check if a
protocol preserves the secrecy of a message.

Definition 3 (Secrecy):Given a security protocolP and a
sensitive messagem, we say thatP guarantees the secrecy of
m if:

∀x ∈ IK(t#) : x u ma = ⊥

www.manaraa.com

TABLE IV

THE PROTOCOL ABSTRACTION FUNCTIONΨ

Ψ(Ax) = A
Ψ(By) = B
Ψ(S) = S
Ψ(Nσ

ax
) = Na

Ψ(Kax) = Ka

Ψ(K−1
ax) = K−1

a

Ψ(Kaxby
) = Kab

Ψ(Kσ
axby

) = Kab

Ψ({m1}m2
) = al1,l2 ({Ψ(m1)}Ψ(m2))

Ψ(m1.m2) = al1,l2 (Ψ(m1).Ψ(m2))
Ψ((σ.i. X −→ Y : m). P) = (σ.i. Ψ(X) −→ Ψ(Y) : Ψ(m)). Ψ(P)
Ψ(x) = cte otherwise

TABLE V

ABSTRACT INTRUDERKNOWLEDGE GENERATION FROMABSTRACTTRACES

Init
ε |∼ KI

#
⇓

Get knowledge
t# |∼ M

t#. (σ.i. A −→ B : ma) |∼ M ∪ ma

wheret# is the finite abstract trace generated from the abstract
protocolP# andu is the greatest lower bound(glb) function
over the posetD#(≤a).

It is clear that with our definition, we can build only a semi-
decidable procedure since if there existsx ∈ IK(t#) such
thatxuma 6= ⊥, we cannot decide that the protocol contains
a secrecy flaw.

VI. CASE STUDY

The protocol presented in Table VI has been proved to be
correct with respect to secrecy in [13]. The protocol aims to
distribute the keyKaxby

to the agentsAx andBy with the aid
of the trusted serverS. Ax initiates the session by sending toS

his identity, the identity of the agent he wants to communicate
with, By, and a nonceNax

, all encrypted with the long-term
key Kaxs that he shares withS. The server replies by sending
to Ax a message that contains a short-term keyKaxby

that
will be shared byAx andBy, encrypted withKaxs. ThenS

sends a message toBy containing the identities ofAx andBy

and the keyKaxby
, all encrypted with the long-term keyKbys

that he shares with the agentBy. Through this last message,
By learns thatAx intends to communicate with him using the
secret keyKaxby

.

To prove the correctness of theHoumani − Mejri protocol
with respect to secrecy, we demonstrate that the protocol
complies with definition 3. In order to do this, we need to

compute the intruder’s knowledge associated with the abstract
tracet# generated by the execution of the protocol. As stated
in section IV, the intruder knows the identities of the agents
and server. The intruder also possesses a nonceNi and a key
shared with the serverKis. The initial intruder knowledge is
illustrated by:

KI = {A, B, S, Ni, Kis}

For convenience, we denote bym1, m2 andm3 the messages
transmitted during the first, second and third protocol steps,
respectively. Forl1 = 0 or l2 = 0, ma

1 = ma
2 = ma

3 =
>. The abstraction has gone too deep and there is no more
useful information for the intruder. The problem of protocol
correctness is undecidable in this case. Forl1 ≥ 2 andl2 ≥ 2,
ma

1 = m1, ma
2 = m2 and ma

3 = m3. There is no benefit
in abstracting the messages, as the intruder does not gain any
information. Therefore, the values of the pair(l1, l2) that could
be useful for the intruder are the tuples (1,1), (2,1) and (1,2).
We fix the values of the parameters tol1 = 1 and l2 = 1 and
compute the abstracted messagesma

1 , ma
2 andma

3 :

a1,1(m1) = a1,1({A.B.Na}Kas
)

= {a0,1(A.B.Na)}Kas

= {a0,0(A).a0,0(B.Na)}Kas

= {A.>}Kas

www.manaraa.com

TABLE VI

THE KEY DISTRIBUTION PROTOCOL

Message σ.1. Ax −→ S : {Ax.By.Nσ
ax

}Kaxs

Message σ.2. S −→ Ax : {{Ax}Nσ
ax

.By .Kσ
axby

}Kaxs

Message σ.3. S −→ By : {Ax.By.Kσ
axby

}Kbys

a1,1(m2) = a1,1({{A}Na
.B.Kab}Kas

)

= {a0,1({A}Na
.B.Kab)}Kas

= {a0,0({A}Na
).a0,0(B.Kab)}Kas

= {>.>}Kas

a1,1(m3) = a1,1({A.B.Kab}Kbs
)

= {a0,1(A.B.Kab)}Kbs

= {a0,0(A).a0,0(B.Kab)}Kbs

= {A.>}Kbs

The abstract tracet# for l1 = 1 and l2 = 1 is:

t# = (σ.1. A −→ I(S) : {A.>}Kas
).

(σ.1. I(A) −→ S : {A.>}Kas
).

(σ.2. S −→ I(A) : {>.>}Kas
).

(σ.2. I(S) −→ A : {>.>}Kas
).

(σ.3. S −→ I(B) : {A.>}Kbs
)

The intruder is not able to decrypt any of the abstracted
messages. Consequently, he can not replace any message
in subsequent protocol executions. Since no fresh messages
can be transmitted, the trace can not be extended with new
actions. The complete abstract trace of theHoumani−Mejri

protocol is thent#. The intruder knowledge associated with
the abstract tracet# is:

IK(t#) = (KI ∪ {{A.>}Kas
, {>.>}Kas

, {A.>}Kbs
})⇓

We compare the elements of the setIK(t#) with the value
Kab that is supposed to be kept secret byP. The process is
trivial for the elements of the initial intruder knowledge set
KI :

Kab u A = Kab u B = Kab u S

= Kab u Ni = Kab u Kis

= ⊥

The three elements ofIK(t#) obtained by abstraction are
encrypted messages that don’t containKab. In this case, we
have the following relation:

Kab u {A.>}Kas
= Kab u {>.>}Kas

= Kab u {A.>}Kbs

= ⊥

The rest of the elements of the setIK(t#) can be obtained by
applying the closure operations from definition 1. Since none
of the basic components containKab, the resulting elements

will also not containKab. Therefore, the condition for secrecy
correctness is fulfilled by the protocol:

∀x ∈ IK(t#) : x u Kab = glb(x, Kab) = ⊥

VII. C ONCLUSION

The main intent of this work is to characterize the verification
of the secrecy property as an abstract interpretation of security
protocols. The abstract model was defined by the means
of a finite abstract trace that models all of the potential
intruder behaviors. The model was applied to approximate the
unbounded space of intruder knowledge to a finite one. This
information was then used to decide if the security protocol
satisfies the secrecy property for sensitive data. Since the
abstract trace is finite, it becomes possible to compute the
finite abstract setM# of messages that the intruder can get
by running a security protocolP. Given a messagem, if for
all x in M#, glb(x, ma) = x u ma = ⊥ then m is distinct
from all messages inM and consequentlyP does not leak the
messagem. The approximation is correct with respect to the
original protocol execution, as it overestimates the capabilities
of the intruder.

REFERENCES

[1] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,
from Proceedings of the Royal Society, volume 426, number
1871, 1989,” in William Stallings, Practical Cryptography for Data
Internetworks. IEEE Computer Society Press, 1996, 1996. [Online].
Available: citeseer.nj.nec.com/burrows90logic.html

[2] K. Adi, M. Debbabi, and M. Mejri, “A New Logic for Electronic
Commerce Protocols,”Theoretical Computer Science (TCS), vol. 291,
no. 2, 2002.

[3] G. Lowe, “Breaking and Fixing the Needham Schroeder Public-Key
Protocol using FDR,” inProceedings of TACAS, vol. 1055. Springer
Verlag, 1996, pp. 147–166.

[4] ——, “SPLICE-AS: A Case Study in Using CSP to Detect Errorsin
Security Protocols,” Programming Research Group, Oxford,Tech. Rep.,
1996.

[5] B. Donovan, P. Norris, and G. Lowe, “Analyzing a library of security
protocols using Casper and FDR,” inWorkshop on Formal Methods and
SecurityProtocols, 1999.

[6] C. Meadows, “The NRL protocol analyzer: An overview,”Journal
of Logic Programming, vol. 26, no. 2, pp. 113–131, 1996. [Online].
Available: citeseer.ist.psu.edu/meadows96nrl.html

[7] D. Bolignano, “Towards a mechanization of cryptographic protocol ver-
ification,” in 9th International Computer-Aided Verification Conference,
CAV’97, Jun 1997.

[8] L. C. Paulson, “Proving properties of security protocols by induction,”
in 10th Computer Security Foundations Workshop. IEEE Computer
Society Press, 1997, pp. 70–83.

[9] D. Monniaux, “Abstracting cryptographic protocols with tree automata,”
in Static Analysis Symposium, 1999, pp. 149–163. [Online]. Available:
citeseer.nj.nec.com/monniaux99abstracting.html

www.manaraa.com

[10] J. Goubault-Larrecq, “A method for automatic cryptographic protocol
verification (extended abstract),” inFMPPTA’2000, Cancun, Mexico,
May 2000. [Online]. Available: citeseer.nj.nec.com/303679.html

[11] K. Adi and M. Debbabi, “A game semantics approach for security pro-
tocols,” in 6th International Symposium on Programming and Systems,
ISPS’2003., 2002, pp. 209–227.

[12] L. Bozga, Y. Lakhnech, and M. Périn, “Pattern-based abstraction for ver-
ifying secrecy in protocols,” inTACAS, ser. Lecture Notes in Computer
Science, vol. 2619. Springer, 2003, pp. 299–314.

[13] H. Houmani and M. Mejri, “Secure protocols for secrecy,” in Founda-
tions of Computer Security, I. Cervesato, Ed., Ottawa, Canada, 26–27
June 2003, pp. 59–68.

[14] C. Cremers, S. Mauw, and E. de Vink, “Defining authentication in a
trace model,” inFAST 2003, ser. Proceedings of the first international
Workshop on Formal Aspects in Security and Trust. Pisa: IITT-CNR
technical report, 2003, pp. 131–145.

[15] T. Y. C. Woo and S. S. Lam, “A lesson on authentication protocol
design,”Operating Systems Review, vol. 28, no. 3, pp. 24–37, 1994.

[16] A. Deutsch, “Interprocedural may-alias analysis for pointers: beyond
k-limiting,” ACM SIGPLAN Notices, vol. 29, no. 6, pp. 230–241, 1994.
[Online]. Available: citeseer.ist.psu.edu/deutsch94interprocedural.html

[17] D. Bert, R. Echahed, and B. Ostvold, “Abstract rewriting,” in Third
International Workshop on Static Analysis. Lecture Notes in Computer
Science 724, Springer-Verlag, 1993, pp. 178–192.

[18] D. Bert, R. Echahed, and K. Adi, “Resolution of goals with the
functional and logic programming language LPG: Impact of abstract
interpretation,” pp. 629–632, 1996.

APPENDIX

Proposition 1 (1): Let m ∈ D#, l1, l2, l′1 and l′2 four
natural numbers such thatl1 ≥ l′1 and l2 ≥ l′2, then:

al1,l2(m) ≤a al′
1
,l′

2(m)
Proof: The proof is by structural induction onm.

• m is atomic:

al1,l2(m) = m ≤a m = al′
1
,l′

2(m) (5)

• m = m1.m2: We distinguish the following cases:

– l′2 = 0:

al1,l2(m) ≤a > = al′
1
,0(m) = al′

1
,l′

2(m) (6)

– l′2 6= 0:
By definition of the functiona_,_(_) we have:

al1,l2(m) = al1,l2−1(m1).a
l1,l2−1(m2) (7)

By induction hypothesis, we have:
{

al1,l2−1(m1) ≤a al′
1
,l′

2
−1(m1)

al1,l2−1(m2) ≤a al′
1
,l′

2
−1(m2)

(8)

By definition of the ordering and 8, we have:

al1,l2−1(m1).a
l1,l2−1(m2) ≤a

al′
1
,l′

2
−1(m1).a

l′
1
,l′

2
−1(m2) (9)

By definition of the functiona_,_(_) and 9, we have:

al1,l2(m1.m2) = al1,l2(m) ≤a

al′
1
,l′

2(m) = al′
1
,l′

2(m1.m2) (10)

• m = {m1}K : we distinguish the following cases

– l′1 = 0:

al1,l2(m) ≤a > = a0,l′
2(m) = al′

1
,l′

2(m) (11)

– l′1 6= 0:
By definition of the functiona_,_(_) we have:

al1,l2(m) = {al1−1,l2(m1)}K (12)

By induction hypothesis, we have:

al1−1,l2(m1) ≤a al′
1
−1,l′

2(m1) (13)

By definition of the ordering and 13, we have:

{al1−1,l2(m1)}K ≤a {al′
1
−1,l′

2(m1)}K (14)

By definition of the functiona_,_(_) we deduce:

al1,l2(m) ≤a al′
1
,l′

2(m) (15)

Proposition 1 (2): The abstraction functiona_,_(_) is ex-
tensive, i.e.:

∀m ∈ D#, ∀l1, l2 ∈ N : m ≤a al1,l2(m) (16)
Proof: Let m ∈ D# and let l1 and l2 be two natural

numbers. The proof is by structural induction onm.

• m is atomic:

m ≤a m = al1,l2(m) (17)

• m = m1.m2: By induction hypothesis, we have:
{

m1 ≤a al1,l2(m1)
m2 ≤a al1,l2(m2)

(18)

By definition of the ordering and 18, we have:

m1.m2 ≤a al1,l2(m1).a
l1,l2(m2) (19)

By definition of a_,_(_), we have:

al1,l2(m1).a
l1,l2(m2) = al1,l2+1(m1.m2) (20)

By 19 and 20, we have:

m1.m2 ≤a al1,l2+1(m1.m2) (21)

By the proposition 1, we have

al1,l2+1(m1.m2) ≤a al1,l2(m1.m2) (22)

By 21 and 22, we have:

m1.m2 ≤a al1,l2(m1.m2) (23)

• m = {m1}K : By induction hypothesis, we have:

m1 ≤a al1,l2(m1) (24)

By definition of the ordering, we have:

{m1}K ≤a {al1,l2(m1)}K (25)

www.manaraa.com

By definition of a, we have:

{m1}K ≤a al1+1,l2({m1}K) (26)

By the proposition 1, we have:

al1+1,l2({m1}K) ≤a al1,l2({m1}K) (27)

By 26 and 27, we deduce:

{m1}K ≤a al1,l2({m1}K) (28)

Proposition 1 (3): The abstraction functiona_,_(_) is idem-
potent, i.e.:

a ◦ a = a (29)
Proof: Let m ∈ D# and let l1 and l2 be two natural

numbers. The proof is by structural induction onm.

• m is atomic:

al1,l2(al1,l2(m)) = m = al1,l2(m) (30)

• m = m1.m2. By definition ofa_,_(_), we have:

al1,l2(al1,l2(m1.m2)) = (31)

al1,l2−1(al1,l2−1(m1)).a
l1,l2−1(al1,l2−1(m2))

By induction hypothesis, we have:

{

al1,l2−1(al1,l2−1(m1)) = al1,l2−1(m1)
al1,l2−1(al1,l2−1(m2)) = al1,l2−1(m2)

(32)

By 31 and 32, we have:

al1,l2(al1,l2(m1.m2)) = al1,l2−1(m1).a
l1,l2−1(m2)

(33)
By definition of a_,_(_) and 33, we deduce:

al1,l2(al1,l2(m1.m2)) = al1,l2(m1.m2) (34)

• m = {m1}K . By definition ofa_,_(_), we have:

al1,l2(al1,l2({m1}K)) = {al1−1,l2(al1−1,l2(m1))}K

(35)
By induction hypothesis, we have:

al1−1,l2(al1−1,l2(m1)) = al1−1,l2(m1) (36)

By 35 and 36, we have:

al1,l2(al1,l2({m1}K)) = {al1−1,l2(m1)}K (37)

By definition of a_,_(_) and 37, we deduce:

al1,l2(al1,l2({m1}K)) = al1,l2({m1}K) (38)

In the sequel we prove that the abstraction functiona_,_(_)
is monotone. First, we have to prove technical lemmas which

state that the size of an abstracted message can be smaller than
or equal to the size of the original message. The intuition is
that the abstraction leads to loss of detail, which is reflected
in the contracted depth and width of the resulting message.
The equality corresponds to the special case of the original
and the abstracted message being the same.

We define the size of a message, written|_| as follows:

m is atomic ⇒ |m| = 0
|m.m′| = |m| + |m′| + 1
|{m}m′ | = |m| + 1

Lemma 1:∀m ∈ D#, ∀l1, l2 ∈ N : |al1,l2(m)| ≤ |m|
Proof: Let m ∈ D# and let l1 and l2 be two natural

numbers. The proof is by structural induction onm.

• m is atomic. By definitional1,l2(m) = m, then we have:

|al1,l2(m)| = |m| ≤ |m| (39)

• m = m1.m2. By definition ofa_,_(_), we have:

al1,l2(m1.m2) = al1,l2−1(m1).a
l1,l2−1(m2) (40)

By 40 and the definition of|_|, we have:

|al1,l2(m1.m2)| = |al1,l2−1(m1)|

+ |al1,l2−1(m2)|

+ 1 (41)

By induction hypothesis, we have:
{

|al1,l2−1(m1)| ≤ |m1|
|al1,l2−1(m2)| ≤ |m2|

(42)

By 42, we have:

|al1,l2−1(m1)| + |al1,l2−1(m2)| + 1 ≤ |m1| + |m2| + 1
(43)

By 43 and the definition of|_| we have:

|al1,l2−1(m1).a
l1,l2−1(m2)| ≤ |m1.m2| (44)

By 44 and the definition ofa_,_(_) we have:

|al1,l2(m1.m2)| ≤ |m1.m2| (45)

• m = {m1}K . By definition ofa_,_(_), we have:

al1,l2({m1}K) = {al1−1,l2(m1)}K (46)

By 46 and the definition of|_|, we have:

|al1,l2({m1}K)| = |al1−1,l2(m1)| + 1 (47)

By induction hypothesis, we have:

|al1−1,l2(m1)| ≤ |m1| (48)

By ≤ property and 48 we have:

www.manaraa.com

|al1−1,l2(m1)| + 1 ≤ |m1| + 1 (49)

By 49 and the definition of|_| we have:

|{al1−1,l2(m1)}K | ≤ |{m1}K | (50)

By 50 and the definition ofa_,_(_) we have:

|al1,l2({m1}K)| ≤ |{m1}K | (51)

Lemma 2:∀m ∈ D#, ∀l1, l2 ∈ N : |al1,l2(m)| = |m| ⇒
al1,l2(m) = m

Proof: Let m ∈ D# and let l1 and l2 be two natural
numbers. The proof is by structural induction onm.

• m is atomic. By definition ofa_,_(_), we have:

al1,l2(m) = m

• m = m1.m2. By definition of a_,_(_) and |_| operator,
we have:

|m1.m2| = |m1| + |m2| + 1
|al1,l2(m1.m2)| = |al1,l2−1(m1)|

+ |al1,l2−1(m2)| + 1
(52)

By hypothesis and 52, we deduce:

|al1,l2−1(m1)| + |al1,l2−1(m2)| = |m1| + |m2| (53)

By lemma 1 and 53, we deduce:
{

|al1,l2−1(m1)| = |m1|
|al1,l2−1(m2)| = |m2|

(54)

By induction hypothesis and 54, we deduce:
{

al1,l2−1(m1) = m1

al1,l2−1(m2) = m2
(55)

By definition of a_,_(_) and 55, we have:

al1,l2−1(m1).a
l1,l2−1(m2) = al1,l2(m2.m2)

= m1.m2 (56)

• m = {m1}K . By definition of a_,_(_) and |_| operator,
we have:

|al1,l2({m1}K)| = |{al1−1,l2(m1)}K |
= |al1−1,l2(m1)| + 1

|{m1}K | = |m1| + 1
(57)

By hypothesis and 57, we deduce:

|al1−1,l2(m1)| = |m1| (58)

By induction hypothesis and 58, we deduce:

al1−1,l2(m1) = m1 (59)

By definition of a_,_(_) and 59, we deduce:

{al1,l2−1(m1)}K = al1,l2({m1}K) = {m1}K (60)

Proposition 1 (4): The abstraction functiona_,_(_) is
monotone, i.e.:

∀m, m′ ∈ D#, ∀l1, l2 ∈ N : m ≤a m′ ⇒

al1,l2(m) ≤a al1,l2(m′) (61)
Proof:

Let m, m′ ∈ D# such thatm ≤a m′. Let l1 and l2 be two
natural numbers. The proof is by induction onH = |m|:

• H = 0. This means thatm is atomic. We have two cases

– m′ = m.

al1,l2(m) = m ≤a m′ = al1,l2(m′) (62)

– m′ = >. By definition of the relation≤a anda, we
have:

al1,l2(m) = m ≤a > = al1,l2(>)

= al1,l2(m′) (63)

• H = n. By the proposition 1, we have:

m′ ≤a al1,l2(m′) (64)

Sincem ≤a m′ and by 64, we deduce:

m ≤a al1,l2(m′) (65)

By the lemma 1, we have two cases:

– |al1,l2(m)| < |m|, then by induction hypothesis, we
have:

al1,l2(al1,l2(m)) ≤a al1,l2(m′) (66)

By proposition 1 and 66, we have:

al1,l2(m) ≤a al1,l2(m′) (67)

– |al1,l2(m)| = |m|. By lemma 2, we deduce that:

al1,l2(m) = m (68)

By 68 and 65, we deduce:

al1,l2(m) ≤a al1,l2(m′) (69)

Proposition 2: Let m be a message,l1 andl2 be two natural
numbers then:

|al1,l2(m)| ≤ 2l1+l2 − 1
Proof: The proof is by structural induction onm.

• m is atomic. By definitional1,l2(m) = m, then we have:

|al1,l2(m)| = |m| = 0 ≤ 2l1+l2 − 1 (70)

www.manaraa.com

• m = {m′}K . By definition of the abstraction functiona,
we have:

al1,l2({m′}K) = {al1−1,l2(m′)}K (71)

By definition of the operator|_| and 71, we have:

|al1,l2({m′}K)| = |al1−1,l2(m′)| + 1 (72)

By induction hypothesis, we have:

|al1−1,l2(m′)| ≤ 2l1−1+l2 − 1 =
2l1+l2 − 2

2
≤ 2l1+l2 − 2 (73)

By 71, 72 and 73, we deduce:

|al1,l2({m′}K)| ≤ 2l1+l2 − 1 (74)

• m = m1.m2. By definition of the abstraction functiona,
we have:

al1,l2(m1.m2) = al1,l2−1(m1).a
l1,l2−1(m2) (75)

By definition of the operator|_| and 75, we have:

|al1,l2(m1.m2)| = |al1,l2−1(m1)|

+ |al1,l2−1(m2)|

+ 1 (76)

By induction hypothesis, we have:
{

|al1,l2−1(m1)| ≤ 2l1+l2−1 − 1
|al1,l2−1(m2)| ≤ 2l1+l2−1 − 1

(77)

By 76, 77, we deduce:

|al1,l2(m1.m2)| ≤ (2l1+l2−1 − 1)

+ (2l1+l2−1 − 1) + 1

= 2l1+l2 − 1 (78)

Proposition 3: Let M be a set of messages such that the
set of atomic messages inM is finite. If the depth of each
message inM is bounded then the setM is finite.

Proof: Let |M | = Max{|m| | m ∈ M} be the maximum
length of the messages inM (a bound). The proof is by
induction on|M |.

• |M | = 0. We deduce that each message inM is atomic.
By hypothesis, we conclude thatM is finite.

• |M | = n > 0. Let M = M1 ∪ M2 such that|M1| =
n − 1 and M2 = {m ∈ M | |m| = n}. By induction
hypothesis, we have:

M1 is a finite set (79)

Let m ∈ M2. Since |m| = n > 0, we have the two
following cases:

{

m = {m1}K ∧ |m1| = n − 1
m = m1.m2 ∧ |m1| < n ∧ |m2| < n

(80)

We build the setM ′ as follows:
{

{m1}K ∈ M2 ⇒ {m1, K} ⊆ M ′

m1.m2 ∈ M2 ⇒ {m1, m2} ⊆ M ′ (81)

Since the encryption keys are atomic messages, then, by
80, we deduce that:

|M ′| < n (82)

By induction hypothesis, we have:

M ′ is a finite set (83)

We build the setM ′′ as follows:

{

{m1, K} ⊆ M ′ ⇒ {m1}K ∈ M ′′

{m1, m2} ⊆ M ′ ⇒ m1.m2 ∈ M ′′ (84)

By 81 and 84, we deduce:

M2 ⊆ M ′′ (85)

By 83 and 84, we have:

M ′′ is finite (86)

By 85 and 86, we have:

M2 is finite (87)

By 79 and 87, we deduce that:

M is finite (88)

Proposition 4: Let M be a finite set of messages. ThenM
#

⇓

is finite.
Proof: SinceM is finite, then:

{m ∈ M | |m| = 0} is finite (89)

Let m ∈ M
#

⇓ , by the definition ofM#

⇓ and Proposition 2,
we have:

|m| ≤ 2l1+l2 − 1 (90)

By 89, 90 and Proposition 3, we deduce thatM
#

⇓ is finite.

Proposition 5 (Finiteness):Let P be a cryptographic proto-
col and letP# be the corresponding abstracted protocol. Then,
the multi-session, multi-role trace execution modelt# of P

#

is finite.
Proof: As stated in section II, a trace can be extended

with an eventa whenever the message transmitted during that
action is fresh. We will prove that, because of the protocol
abstraction, the number of distinct messages that can be issued
is bounded.

www.manaraa.com

The abstraction of atomic messages bounds the number of
agents, keys (public and session) and nonces. Henceforth, we
denote byNbatoms their total number. We remind the reader
that the inductive rules that can lead to a trace extension are
Receive and Intruder (Table II). They define how the intruder
can increase his knowledge set either by intercepting messages
and decomposing them, or by building new messages from
pieces of information that he already possesses. We fixl1 and
l2 and adapt the two rules to our abstract trace modelt#. In the
following, we analyze their effect on the abstracted protocol
runs.

The Receive rule is modified to reflect that the intruder can
only obtain abstracted messagesma. Likewise, theIntruder

rule is changed to indicate that the intruder can only send
ma. The size of those messages,|ma| is limited, as shown in
Proposition 2:

|ma| ≤ 2l1+l2 − 1

The intuition is quite simple: if, for any message size between
0 and2l1+l2 − 1, the number of messages is bounded, then
there is a limited number of possible messagesma.

Let m, m′ and m′′ be atomic messages. The total number
of messages of size 0 (atomic messages) isNbatoms. For
the messages of size 1, we have to count both encryptions
and concatenations of atoms. For each of them, the number
is (Nbatoms)

2. So, the total number of possible messages of
size 1 is2×(Nbatoms)

2. For size 2, the computations become
more complex. We have several different combinations of
operations on atoms that can produce messages of size 2:
m.m′.m′′, {m.m′}′′m, {{m}′m}′′m, m.{m′}′′m and {m}′m.m′′.
For each of them, there can be(Nbatoms)

3 possible messages.
Consequently, the total number of messages of size 2 is
5 × (Nbatoms)

3. The reasoning can be continued until size
2l1+l2 − 1 is reached. For each sizes ∈ [0, 2l1+l2 − 1], there
will be an increasing number of combinations of messages,
each of them with(Nbatoms)

s possible messages. Although
the total number increases dramatically, it is still finite.

New actions can be added to the trace only if the messages
are fresh. Since the number of messages that can be sent or
received by the intruder is bounded, the number of inductive
rules that describe the corresponding actions is also limited.
Therefore, the abstract tracet# is rendered finite.

